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Abstract
A systematic operational calculus framework that characterizes droplet/bubble
size distributions resulting from turbulent breakup of an immiscible fluid
into a carrier one is presented. The proposed formulation is derived from
dynamical arguments; a finite-difference formulation of the integro-differential
continuous coagulation and fragmentation equation is shown to exhibit the same
structure as a discrete sequence of Mellin convolutions between the probability
distribution of the evolving dispersed phase and a generic kernel. This kernel
may have its physical correspondence with the probability distribution resulting
from a single breakup event, e.g. a liquid ligament breakup in a ligament-
mediated spray formation. The number of convolution steps in the sequence
can be reduced to a single parameter. As an illustration, this procedure is
applied to the exponential and the gamma distributions, obtaining as a result
the Fréchet distribution earlier used by Rosin and Rammler (1934 Kolloid-
Zeitschrift 67 16–26), and by Nukiyama and Tanasawa (1939 Trans. Soc.
Mech. Eng. Japan 5 62–7). Thus, the framework introduced in this work
provides a physical foundation for the success of the Fréchet distribution in
accurately fitting experimentally measured droplet size distributions in sprays
and emulsions.

PACS numbers: 47.55.D−, 02.50.Cw

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Complex physical processes involving a multiplicity or even a continuum of scales frequently
induce the emergence of large-scale features and behaviors amenable to description in terms of
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a finite number of parameters, an understanding whose accomplishment is foreseen by some
authors of prospective essays as one of the various fundamental opportunities of physics in this
century [1]. Among complex processes, turbulent breakup and dispersion of an immiscible
phase into a carrier one may well be one of the most paradigmatic cases for its ubiquity,
prevalence and overall importance in many natural and artificial activities.

Since the early works of Kolmogorov [2] and Hinze [3], the understanding and
quantification of the processes taking place on the turbulent breakup and dispersion of
immiscible phases have undergone a significant advance [4]. The physical and chemical
characteristics of the final dispersion are determined by a great extent by the size distribution
of the droplet or bubble populations. The energy transfer from the carrier to the dispersed
phase in the form of droplets or bubbles involves complex processes where interfacial, viscous
and inertia forces play different roles depending on the local characteristic lengths considered
[5].

Generically, the amount of energy that the process manages to put in the form of interfacial
free energy can be quantified by a single parameter, the well-known Sauter mean diameter,
which measures the inverse of the amount of surface produced per unit volume dispersed in the
process. However, a single parameter cannot provide any additional fundamental information
on the eventually resulting state, such as the extension of the small and large size tails of the
distribution, the amount of mass contained in the population below a given size, the possible
existence of multiple peaks in the count or mass distribution or the general appearance of the
size population. These features are best described considering the population size as a random
variable and analyzing its probability distribution, mathematically expressed as a continuous
function. The methods of mathematical statistics allow us to study the asymptotic behavior of a
dynamical process acting on a random variable; for instance, one of the most important results
in statistics, the central limit theorem, reduces to a universal function class, the normal (or its
alternative log-normal distribution), the asymptotic distribution of an infinite sum (or product)
of random variables under rather general hypotheses. In the case of turbulent breakup, an
‘asymptotic’ distribution would involve a large number of steps or a long processing time, under
constant energy input and geometrical scales. However, most real processes like the pneumatic
atomization of a liquid are characterized by a short time of development (the residence time
of the liquid at the nozzle discharge region). Thus, the resulting spray statistics should reflect
the fact that the process (i) underwent strongly varying conditions under enormous gradients
and (ii) became halted soon before asymptotic conditions could be even approached.

The quest for the links between the statistical properties of the resulting size distribution
and the dynamical events taking place during the finite-time turbulent breakup, mixing and
dispersion process has traditionally been one of the fundamental topics of multiphase flow
physics. Both fragmentation and coalescence events plague the intimate contact between
the carrier and the disperse phase in their co-evolution, to such an extent that these could
be considered the basic ingredients of every turbulent breakup and dispersion process,
being the carrier phase the main source of energy. Numerous studies on the mathematical
features of the solutions to either coalescence of fragmentation equations (i.e. existence and
uniqueness, similarity, asymptotic behaviors, etc) have been proposed (e.g. [6–10]). In this
regard, numerous authors have resorted to either fragmentation (e.g. [11–14]) or coalescence
phenomena alone [15, 16] to explain the basic features of different distributions resulting
from breakup phenomena. In these last references, Villermaux, Marmottant and collaborators
claimed to explain the resulting general size distribution of droplets in sprays in terms of
liquid coalescence events during liquid ligament breakup, leading to gamma distributions.
Indeed, they successfully compare with experiments their proposition in detailed studies on
liquid ligament breakup (see also [17]). It is interesting to emphasize that their ideas are
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not explained from fragmentation but from coalescence principles alone. Moreover, in the
preparation of the present paper, an article by Villermaux and Bosa [18] has appeared analyzing
in detail the dynamics of formation of rain droplets. These authors describe the rain droplet size
distribution from the convolution of a gamma distribution previously proposed by them (due to
the breakup of liquid rims resulting from bag-like breakup of droplets larger than a critical size)
and an exponential distribution (from the large size tail of prior ligament breakups) to obtain
a size distribution law that seems to explain prior findings. Intriguingly, these authors do not
explain the raindrop size distribution from fragmentation principles, what might seem obvious
at first sight: the ultimate mechanism that describes their specific proposed distribution is
coalescence, instead. Fragmentation is just a random route to reach the specific critical size
that gives rise to a single-bag breakup mode (which seems the ultimate breakup mechanism
of rain droplets); the droplets around the critical size have an exponential distribution in
that range because they come from the large size tail of prior breakups following gamma
distributions.

Some authors have already pointed out the analogy between the equations of coalescence
and fragmentation (e.g. [9, 19, 20]), and consequently it seems natural to propose combined
forms of these equations applicable to processes where both phenomena may coexist [10].
These expressions may provide a natural, useful tool to mathematically describe the turbulent
breakup of immiscible phases. Thus, motivated by the structure of the non-linear integro-
differential equation modeling coagulation and fragmentation already proposed in the literature
[10], in this work we propose a mathematical framework (based on the Mellin transform) to
study the resulting size distribution. Using our formulation, we generalize a variety of
previously proposed distributions. These generalized distributions exhibit universal features
with direct physical interpretation. In particular, we lay out a generalization of previous
approaches [15] where only coalescence or fragmentation [14] events were considered.
As already pointed out through the step taken in [18], those previous approaches may
provide basic but incomplete ingredients to find the droplet size distribution of a generic real
spray.

In summary, our aim is to introduce a mathematical framework where real droplet
distributions resulting from turbulent breakup processes could be faithfully projected on simple
functional spaces provided by continuous mathematical functions (continuous probability
distributions). These functions are characterized by a small number of meaningful parameters
which encapsulate physical features of the process, such as characteristic lengths, frequencies
or average number of coalescence/fragmentation events. In this work, we apply our proposed
approach to analyze two families of classical, well-established model probability density
functions (pdfs), showing the deep physical roots of their enormous success to describe real
distributions by explaining the physical meaning of their free parameters. We show that
a physically consistent, general mathematical reduction along the lines here proposed may
successfully complement, generalize or expand the applicability of prior studies like the ones
by [15, 16], in the context of the spray formation from liquid ligament turbulent breakup,
and by other authors (e.g. [19, 21]) who studied the asymptotic solutions to the fragmentation
equations.

2. Mathematical structure of mass-conservative probability density functions, and
proposed general approaches

In general, a pdf used to describe the random distribution of lengths, surfaces or volumes
and, in particular, the distribution of the mass or volumes of droplets or bubbles in a spray,
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emulsion or foam can be written in the form

p(x) = xα−1f (x), (1)

where x represents the droplet mass or volume. Clearly, f (x) must obey obvious conditions
of integrability in the domain x ∈ [0,∞), demanded by mass conservation and existence of
all moments of the distribution p(x). Here, in contrast with other studies [15, 16], we use the
droplet or bubble mass as the relevant variable for its generality and independence from the
particular geometry of the particle, and for convenience to express simple mass conservation
principles as follows.

2.1. Count median and mass median size

The mass mean size is taken as the unity of mass in this work, i.e.∫ ∞

0
xp(x, t) dx = 1. (2)

Using the definition of the Mellin transform P(s) of p(x) (appendix A), equation (2) implies
that

P(2) = 1. (3)

Similarly one has that P(1) = 1 because p(x) is a probability density function.
We define the count median particle mass x50 as∫ x50

0
p(x, t) dx = 1/2, (4)

and the particle mass median size y50 as∫ y50

0
xp(x, t) dx = 1/2. (5)

If we were interested in the mass fraction φ of the total mass put in mass sizes smaller than
yφ , it would be calculated through the expression

φ =
∫ yφ

0
xp(x, t) dx. (6)

2.2. A finite-difference reduction of the general fragmentation–coagulation equations

The complexity and case-dependency exhibited by the exhaustive studies already existing in the
literature preclude the general treatment pursued in this work. On the other hand, a sufficiently
general approach should be consistent with the basic, common dynamical ingredients shared
by all turbulent breakup phenomena, i.e. it must encompass fragmentation, collision and
coalescence and dynamical evolution in a mathematical formulation as general and consistent
as possible. Ideally, we seek for a reduction of the dynamical effects mentioned into a finite
number of parameters. To deal with this challenge, the choice of the structure (1) is not
arbitrary. While the multiplicative factor xα−1 reflects the general trend of the distribution for
small sizes (sometimes due to fragmentation), f (x) is often given in the form of exponential
expressions; interestingly, the log-normal, exponential, Poisson or gamma, Fréchet (also
known as Rosin-Rammler, Nukiyama-Tanasawa, or Weibull [22–25]), and other proposed
distributions follow this simple structure. A physical foundation for the exponential nature of
f (x) is proposed in [15], where the authors explain the exponential decay e−x of drop sizes
as a result of the ligament-mediated spray formation on the basis of coalescence events of the
randomly distributed liquid lumps in which a ligament is composed of.
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To formulate a mathematical model for f (x) as simple as possible, we make use of a
recently proposed general formulation of the dynamical fragmentation–coagulation equation
[10]. Our partial goal is here to characterize the general effect that a cascade of several
subsequent fragmentation–coagulation events would leave onto an initial pdf, ideally reflected
by a single parameter. We model those events as dynamical ‘convolutions’ of the pdf and a
generic kernel; thus, the parameter will allow us to determine the degree of convolution that a
certain process imposes. Since each convolution represents a product of random variables, the
consistency of the proposed mathematical transformations is tested against the central limit
theorem when the degree of convolution becomes large: our proposed transformations should
convert any initial pdf into a log-normal as the degree of convolution grows.

Fragmentation–coagulation equations, both in discrete [26] and continuous [10] forms,
have been formulated in the literature, and the existence and uniqueness of their solutions
have been studied in some depth. Moreover, asymptotic/equilibrium solutions have also been
given. The general form of continuous fragmentation–coagulation equations can be written
as [10]

∂tp(x, t) = (Fp)(x, t) + (Cp)(x, t), (7)

where p(x, t) represents the probability density function of a lump of liquid of mass x at time t.
F and C are the operators representing the production rates per unit time from fragmentation
and coalescence, respectively. They are more explicitly written in the literature as

(Fp)(x, t) = −a(x)p(x, t) +
∫ ∞

x

b(x, y)a(y)p(y, t) dy, (8)

and

(Cp)(x, t) =
∫ x

0

1

2
k(x − y, y)p(x − y, t)p(y, t) dy

−p(x, t)

∫ ∞

0
k(x, y)p(y, t) dy, (9)

where a more detailed explanation of each term in (8) and (9) is given in [10, 19, 20, 27]. In
particular, a(x) represents the overall fragmentation frequency of a mass x, b(x, y) represents
the average number of lumps of mass x produced when a lump of mass y breaks, which should
satisfy

∫ y

0 b(x, y)x dx/y = 1 for conservation of mass and k(x, y) represents the coalescence
frequency of masses with sizes x and y.

We will attempt to use the integro-differential equation (7) to represent a finite time process
(the liquid atomization) which proceeds along a number N of time steps �t before it is abruptly
stopped at the final state. To do so, we make a number of broad assumptions on the evolution
equation (7), described next, to reach to a very simplified model. How accurately this model
may reflect general physical features of actual mass distributions can be quantified afterward
through the appropriate experimental comparison with real droplet size distributions.

Given the general form of the destruction and production terms in (8) and (9), it is possible
to make the following observations.

(i) A unified destructive term can be written as

(Dp)(x, t) = −p(x, t)

∫ ∞

0
[a(x) + k(x, y)]p(y, t) dy

= −p(x, t)d(x, t), (10)

given that
∫∞

0 p(y, t) dy = 1, where d(x, t) can be interpreted as the average, total
destruction frequency of a mass x along the process.
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(ii) A unified productive term is expressible as

(Pp)(x, t) =
∫ ∞

0

{
b(x, y)a(y)H(x)

+
1

2
k(x − y, y)p(x − y, t) [1 − H(x)]

}
p(y, t) dy, (11)

where H(x) is the Heaviside step function, introduced for consistency with expressions
(8) and (9).

(iii) One can approximate the kernel in the integral transform of (11) as

p∗(x/y, t)d(y, t)/y � b(x, y)a(y)H(x) + 1
2k(x − y, y)p(x − y, t)[1 − H(x)], (12)

where p∗(x, t) is, through mass conservation considerations, a certain probability
distribution which might get its physical meaning from the repeated and homogeneously
distributed sub-processes of breakup driven by the turbulent frequency and the availability
of turbulent energy along the entire x-size scale cascade. Then (Pp)(x, t) could be
expressed as

(Pp)(x, t) =
∫ ∞

0
p∗(x/y, t)p(y, t)d(y, t) dy/y. (13)

(iv) Using the function p∗(x, t) from (12), one could reduce (7) to a finite difference expression
for a time interval �t as

p(x, t + �t) − p(x, t) �
[
−p(x, t)d(x, t)

+
∫ ∞

0
p∗(x/y, t)p(y, t)d(y, t) dy/y

]
�t + O(�t2). (14)

(v) First, assuming that fragmentation is fundamentally driven by the turbulent energy
coming from the gas flow, one may expect that the mass median size scales as a
critical length l∗ such that the surface tension forces σ/l∗ and the pressure fluctuations
ρgu

′2 ∼ ρgU
2
g (l∗/L)2/3 ∼ ρg(εl

∗)2/3 balance. ρg , Ug, L and ε are the density,
macroscopic velocity, length scale and energy dissipation rate of the gas flow, respectively;
u′ is the characteristic fluctuation velocity at the length scale l. However, this is
not the object of this paper since this has already been widely studied and verified
in the literature. We are interested in how the droplet size is distributed around the
mass median size, commensurate with l∗. To this end, one may observe that the
breakup frequency should go to zero for droplets with characteristic lengths l smaller
than the critical size range l∗, while for larger droplets, the frequency should scale as
f ∼ (ε/ l2)1/3, which decreases as l−2/3 when l increases. Thus, since df/dl > 0
(df/dl < 0) for l larger (smaller) than l∗, the maximum breakup frequency should occur
around f ∗ ∼ Ug/(L l2)1/3 ∼ ρ

2/5
g σ−2/5U

9/5
g L−3/5 ∼ ρ2/5σ−2/5ε3/5 for an average size

around l∗ ∼ ρ
−3/5
g σ 3/5U

−6/5
g L2/5 ∼ ρ−3/5σ 3/5ε−2/5 (thus, f ∗ ∼ ε1/3(l∗)−2/3), and these

frequency and length scales dominate both fragmentation and coalescence since they
govern the gas motion, which carries the liquid lumps. Consequently, the breakup and
coalescence frequency should exhibit a maximum around f ∗, which fundamentally affects
a characteristic length scale range around l∗. Many authors have proposed models in the
classical literature for the specific drop breakage rate in turbulent flows. Ross and Curl
[28], and Coulaloglou and Tavlarides [29] proposed a model as

f/f ∗ = c1(l
∗/l)2/3e(−l∗/l)5/3

, (15)
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Figure 1. The droplet or bubble breakage rate models of Ross and Curl [28] and Coulaloglou and
Tavlarides [29] (c1 = 1.6, c2 = 0.5, continuous line), Chatzi and Lee [31] (c1 = 1, dashed line),
and Lasheras et al [30] (c1 = 0.25, dot-dashed line).

where f ∗ = ε1/3(l∗)−2/3, l∗ = ρ−3/5σ 3/5ε−2/5, and {c1, c2} are the constants of the order
unity. This model contains both the f ∼ l−2/3 trend for l larger than l∗ and the decreasing
f behavior for l smaller than l∗. The model above was reviewed by Lasheras et al [30],
who alternatively proposed for bubbles in water:

f/f ∗ = c1[β − 12(l∗/l)5/3]1/2, (16)

where β = 8.2 was given by Batchelor [5]. Moreover, Chatzi and Lee [31] proposed for
liquid–liquid dispersions that

f/f ∗ = c1
[3/2, (l∗/l)5/3]. (17)

These models for turbulent breakage of dispersed phases (generally for liquid in gas, gas in
liquid, and liquid–liquid) are plotted in figure 1 for illustration. Other authors (Narismhan
et al [32], Luo and Svendsen [33], among many others) have proposed models for liquid–
liquid dispersions with frequencies that do not decay, or tend to a constant, for l larger
than l∗. For liquid droplets in gas, taking a broad approach to all the above models one
may assume, as a first-order approximation, a flat dependence of the breakup-coalescence
frequency for length scales around l∗ and larger. Formally speaking, this means that
d(x, t) is assumed flat as a first approximation around l ∼ l∗, which allows one to take,
without loss of generality, �t ∼ 1/f ∗.

In summary, one can choose �t (time scaling) such that the product d(x, t)�t is
of order unity along the process; this amounts to scale the frequency d(x, t), so that
d(x, t)�t � g(x, t) ∼ O(1), consistently with the finite difference scheme. In this work
we do not aspire to model turbulent breakage, but to provide a new consistent mathematical
tool to reflect the actual complexity of pdfs coming from turbulent breakage-coalescence
by a few parameters. Indeed, our approximation g(x, t) � 1 in one of the steps taken
in the mathematical reduction proposed is consistent with the published literature. Then,
for such processes whose homogeneity along the entire turbulent cascade would justify
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g(x, t) � const, one can choose const. = 1 without lost of generality. In this case, one
would conclude

p(x, t + �t) =
∫ ∞

0
p∗(x/y, t)p(y, t) dy/y, (18)

which corresponds to the convolution of the pdf p with p∗.

Physically, expression (18) would describe how the pdf p would happen to be modulated by
a generalized breakup process with governing pdf p∗ at each finite step of the global process
from the liquid discharge. Naturally, this involves an artificial reduction to a discrete step
sequence from a natural ‘continuous’ process with a governing time scale, though. This same
line of reasoning would directly lead to expression (18) if one starts from the pdf resulting
from a typical ligament breakup (see references [15, 17]), and applies a self-convolution of
that pdf as many times as the number of steps N are required by the process (this number
should be one of the few parameters which the experimental results are reduced to). In this
way, kernel (12) would have a clear physical interpretation: the pdf from a typical ligament
breakup mentioned.

2.3. Using Mellin convolution to obtain closed expressions for N discrete steps

Expression (18) for p(x,�t) is the Mellin convolution of the functions p(x, t) and p∗(x, t)

(see appendix A). Reducing the continuous process to a finite N-step scheme (where the time
t in each step i, denoted by ti, is given by ti = i × �t , i = 1, . . . , N ), we can express

pN(x) =
∫ ∞

0
p1(x/y)pN−1(y) dy/y = p1 � pN−1, (19)

where pi(x) = p(x, ti). Note that we have set p1 ≡ p∗ for convenience and consistency
with the physical interpretation given in the previous section. Denoting by Pi(s) the Mellin
transform of pi(x), the exchange formula (A.3) provides

PN(s) = P1(s)PN−1(s). (20)

Interestingly, since we assume a symmetry in the initial steps of the process, such that the
initial distribution can be expressed as the kernel itself, the symmetry (and the commutative
property of the convolution) of expression (20) proves the equality

p1 � pN−1 =
∫ ∞

0
p1(x/y)pN−1(y) dy/y

=
∫ ∞

0
p1(y)pN−1(x/y) dy/y = pN−1 � p1. (21)

Moreover, one could write for any step N

pN(x) =
∫ ∞

0
pi(x/y)pj (y) dy/y = pi � pj , ∀ (i, j)/N = i + j, (22)

and inductively one obtains

pN = p1 � p1 � . . . � p1︸ ︷︷ ︸
N times

. (23)

In summary, we propose that the discrete temporal scheme discussed can be faithfully reflected
by the general transformation

ϒ[p(x), n] = pn(x), (24)

8
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where n is any positive real number such that, when n ∈ N, then pn = p � . . . � p︸ ︷︷ ︸
ntimes

.

As we will see in detail in the following sections, the properties of the Mellin transform
shown in appendix A guarantee that our proposed transformation (24) leaves the structure
present in (1) invariant, i.e.

pN(x) = xα−1fN(x), (25)

and, therefore, we can express

ϒ[f (x), n] = fn(x) 
⇒ pn(x) = xα−1ϒ[f (x), n]. (26)

3. Some practical applications

Once our general approach has been laid out in terms of a mathematical structure of a pdf
as (1), consisting on (i) a potential pre-function which reflects into a single parameter the
intensity of fragmentation events, and (ii) a function reflecting the discrete convolution steps
of a basic pdf, we aim to apply these principles to two classical distributions. Some remarkable
properties of the proposed transformation ϒ[f (x), n] are then studied, arriving to some general
conclusions supporting that real droplet/bubble size distributions could be faithfully projected
on a relatively simple functional space whose metrics are provided by a small number of
parameters with full physical meaning.

3.1. The log-normal distribution

We start our investigation applying our transformation (25) on a process where p1(x) and pn(x)

can be expressed as log-normal distributions [34]. If our transformation (25) is consistent with
the central limit theorem (CLT), it should leave invariant the log-normal structure and reduce
the degree of convolution to a single parameter.

A log-normal distribution depends on two parameters μ and σ 2 and its probability density
function is classically written as

p(x) = 1

xσ
√

2π
e− (ln x−μ)2

2σ2 . (27)

A fact about the log-normal distribution is that its median value is

x50 = eμ. (28)

We compute the Mellin transform of (27) as follows:

P(s) = 1

σ
√

2π

∫ ∞

0
xs−1 e− (ln x−μ)2

2σ2

x
dx

= 1

σ
√

2π

∫ ∞

0

e− (ln x−μ)2

2σ2 +(s−1) ln x

x
dx. (29)

Changing the variable of integration from x to y = lnx
σ

:

P(s) = 1√
2π

∫ ∞

−∞
e− (y−μ/σ)2

2 +(s−1)yσ dy. (30)

Now, completing the square in y, one has that

− (y − μ/σ)2

2
+ (s − 1)yσ

= − (y − (μ/σ + (s − 1)σ ))2

2
+ (s − 1)

(
μ + (s − 1)

σ 2

2

)
. (31)

9
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Hence,

P(s) = e(s−1)(μ+(s−1) σ2

2 )

√
2π

∫ ∞

−∞
e− (y−(μ/σ+(s−1)σ ))2

2 dy, (32)

and defining z = y−(μ/σ+(s−1)σ )√
2

:

P(s) = e(s−1)(μ+(s−1) σ2

2 )

√
π

∫ ∞

−∞
e−z2

dz = e
(s−1)

(
μ+(s−1) σ2

2

)
, (33)

The normalization requirement that
∫∞

0 xp(x) dx = 1 implies that P(2) = 1; hence,

P(2) = eμ+ σ2

2 = 1, (34)

implying that σ 2 = −2μ and thus reducing the variety of log-normal distributions to a single
parameter. Defining μ̂ = −μ as such parameter, we obtain that

P(s) = eμ̂(s−1)(s−2), (35)

and the probability density function is reduced to

p(x) = 1

2x3/2
√

πμ̂
e− (ln x)2+μ̂2

4μ̂ . (36)

Written in the form p(x) = xα−1f (x), one has α = −1/2 and

f (x) = 1

2
√

πμ̂
e− (ln x)2+μ̂2

4μ̂ . (37)

Taking p1 to be a log-normal distribution of the above form, from (34), one obtains by continued
use of the exchange formula the expression for the N-step distribution function of the process
in Mellin space:

PN(s) = P N
1 (s) = eNμ̂(s−1)(s−2), (38)

which implies that the distribution function is, for all N, again a log-normal distribution1 with
parameters μN = −Nμ̂ and σ 2

N = 2Nμ̂ and thus from the inversion formula

pN(x) = 1

2x3/2
√

πNμ̂
e− (ln x)2+N2μ̂2

4Nμ̂ , (39)

from which

fN(x) = 1

2
√

πNμ̂
e− (ln x)2+(Nμ̂)2

4Nμ̂ . (40)

This shows that the only relevant parameter which characterizes the distribution is Nμ̂. In
figure 2 we show the evolution of pN(x) as N increases for an example values of μ̂.

From this result and using (28), one obtains the count mean x50 as

x50 = e−Nμ̂. (41)

To study the mass median as defined by (5) we consider the probability distribution whose
density function corresponds to p′

N(x) = xpN(x); the median of that probability distribution
is the mass median.

Using the properties of the Mellin transform (see appendix A) we obtain that

P ′
N(s) = PN(s + 1) = eNμ̂s(s−1) = e(s−1)(Nμ̂+Nμ̂(s−1), (42)

1 This is a defining fact of the log-normal distribution: the product of log-normals is again log-normal.
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Figure 2. Plots of pN(x), for N = 1, . . . , 10, when p1(x) is log-normal with μ̂ = 0.1.

and comparing with (33) we see that p′
N(x) is again the density function of a log-normal

distribution with parameters μ′
N = Nμ̂ and σ 2 = 2Nμ̂. Hence, its median (which is the mass

median) is given by

y50 = eNμ̂, (43)

from which we see that x50 = y−1
50 .

The cut-off mass size yφ corresponding to a mass fraction φ for the N-step size distribution
is obtained integrating p′

N(x), which can be done explicitly using the complementary error
function. The result is given by

1

2
erfc

[
Nμ − ln yφ

2
√

μN

]
= φ. (44)

This expression, together with (43), provides a useful expression to relate yφ and φ given y50

alone, i.e.

erfc

[
ln(y50/yφ)

2
√

ln y50

]
= 2φ. (45)

The interesting thing about this result is that, if a certain single-step mass partition process
can be represented by a log-normal distribution, then any subsequent N-step partition process
can be represented by a log-normal distribution whose index N can be obtained from a single
experimental measurement of y50.

From an applied perspective, the answer to the important question of what would be the
mass fraction φ put in sizes below a given yφ for a process involving subsequent steps of
simpler log-normal processes can be given from a single experimental determination of the
mass median and the mass mean sizes, whose ratio is y50 (naturally, the non-dimensional mass
median y50 is made non-dimensional with the mass mean size). And, more importantly, once
y50 is determined, the index N is a direct measure of the degree of convolution of the global
process. What makes the log-normal distribution and its N-convolution particularly interesting
as a first approach toward a potentially systematic modeling of droplet size distributions
is (i) its symmetric behavior for both small and large size populations, (ii) its physical
correspondence with highly convoluted processes exhibiting a symmetry in both fragmentation
and coalescence occurrence rates and (iii) the direct correspondence between the index N and
the extension of subsequent fragmentation and coalescence processes. Thus, an experimental

11
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fitting to a log-normal distribution may provide fundamental information on the physics of the
atomization/mixing process itself, to investigate not only the classical fragmentation cascade
but also its coalescence cascade counterpart. Incidentally, the convolution-index N is not
restricted to natural numbers: for the particular case of the log-normal distribution, N can be
generalizable to any real positive value. This is a natural generalization that overcomes the
discrete nature of the finite-difference scheme (18) and provides additional support for the
consistency of the proposed transformation (24).

3.2. The Fréchet distribution

Once the mathematical consistency of our proposed transformation with the CLT is shown, we
aim to apply our procedure to explain the physical roots of rather general distributions used
in the literature. The best-established closed analytical expressions for pdfs of sprays and
emulsions have been classically introduced by experimental investigators concerned with the
mathematical consistency of their proposals, aided by probability theory (e.g. [23–25]). In the
case of the Fréchet distribution, its success is based on the accuracy by which experimentally
measured distributions are fitted by the analytical model. In this section we provide a
complete analysis of this pdf according to our procedures for its illustrative power. Now,
we investigate the finite-step scheme applied to a process where p1(x) can be expressed as a
Fréchet distribution [22]:

p(x) = axα−1 e−bxβ

, (46)

where a, b, α, β should be positive real numbers.
To obtain the Mellin transform P(s) of p(x), we use the properties listed in

appendix A. Denoting f (x) = e−bx , we have that P(s) = a
β
F
(

s+α−1
β

)
, and since F(s) =

bs
(s) (see appendix A), we obtain that

P(s) = a

β
b

s+α−1
β 


(
s + α − 1

β

)
. (47)

Again, the normalization requirements demand P(1) = P(2) = 1. Those requirements imply
a

β
b

α
β 


(
α

β

)
= a

β
b

α+1
β 


(
α + 1

β

)
= 1. (48)

Solving for a and b we obtain that

a = β

α
(

α+1
β

)

α+1

(
α
β

) , b =
[



(

α+1
β

)


(

α
β

)
]β

. (49)

Thus, normalized Fréchet distributions are characterized by two parameters, namely α and β.
The interest of these distributions is that the exponential (α = β = 1), gamma (β = 1), and
Rosin–Rammler distributions (α = β), very common to model mass distributions in powders
and sprays, are particular cases of the Fréchet ones. Inserting (49) in (47) we obtain the
(normalized) Mellin transform of a Fréchet distribution:

P(s) =


(

s+α−1
β

)[


(

α+1
β

)]1−s

[


(

α
β

)]2−s
. (50)

Obviously, for the exponential function, P(s) = 
(s).
The expression for the N-step distribution of the process is easy to obtain as a Mellin

transform:

PN(s) =
[


(

s+α−1
β

)]N [


(

α+1
β

)]N(1−s)

[


(

α
β

)]N(2−s)
. (51)

12
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To obtain the inverse Mellin transform, denote F(s) = [


(

s+α−1
β

)]N
. Using the properties in

appendix A, we obtain that

PN(x) =
[


(

α+1
β

)]N
[


(

α
β

)]2N
f

⎛
⎝[


(
α+1
β

)


(

α
β

)
]N

x

⎞
⎠ . (52)

It remains to obtain f (x). For that we denote by g(x) the inverse Mellin transform of 
N(s)

and note that, using again the properties listed in appendix A, we obtain

f (x) = βx(α−1)g(xβ), (53)

so that using (52)

pN(x) = βx(α−1)

[


(

α+1
β

)]Nα

[


(

α
β

)]N(α+1)
g

⎛
⎝[


(
α+1
β

)


(

α
β

)
]Nβ

xβ

⎞
⎠ . (54)

The function g(x) is expressed, using the Mellin inverse transform of 
N(s), as

g(x) = 1

2π i

∫ c+i∞

c−i∞

N(s)x−s ds, (55)

where c > 0. Equation (55) is a Mellin–Barnes-type integral which can be expressed using the
Meijer G function, also known as the generalized hypergeometric function, which is a special
function of a very general type that allows us to express, among others, the hypergeometric,
Bessel, trigonometric and exponential functions [35]. Writing (55) in terms of the Meijer G,
we obtain

f (x) = G
N,0
0,N

[
x

∣∣∣∣ −
0, . . . , 0

]
, (56)

and using (54), we obtain

pN(x) = βxα−1[


(

α
β

)]N
[



(

α+1
β

)


(

α
β

)
]Nα

G
N,0
0,N

⎡
⎣[


(
α+1
β

)


(

α
β

)
]Nβ

xβ

∣∣∣∣ −
0, . . . , 0

⎤
⎦ . (57)

Calling

c1 = 1



(

α
β

) , c2 =


(

α+1
β

)


(

α
β

) , (58)

equation (57) is compactly expressed as

pN(x) = βcN
1 cNα

2 xα−1G
N,0
0,N

[
c
Nβ

2 xβ

∣∣∣∣ −
0, . . . , 0

]
, (59)

which, using the properties of the Meijer G function can be further simplified to

pN(x) = βcN
1 cN

2 G
N,0
0,N

[
c
Nβ

2 xβ

∣∣∣∣∣ −
α−1
β

, . . . , α−1
β

]
. (60)

In figure 3 we show the evolution of pN(x) as N increases for example values of α and β. Note
that the function G

N,0
0,N in (60) has been already studied and written explicitly as a function of

x and N in [36]. However, such expression is too involved to be useful in our context.
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Figure 3. Plots of pN(x), for N = 1, . . . , 5, when p1(x) is Fréchet with α = 1.5, β = 0.5.

The most interesting property from an applied point of view is the mass median of the
distribution function defined by (60). To obtain that function, one could in principle apply its
definition (5) and note that∫ y50

0
xpN(x) = βcN

1 cN
2

∫ y50

0
xG

N,0
0,N

[
c
Nβ

2 xβ

∣∣∣∣∣ −
α−1
β

, . . . , α−1
β

]
dx

= βcN
1

∫ y50

0
G

N,0
0,N

[
c
Nβ

2 xβ

∣∣∣∣ −
α
β
, . . . , α

β

]
dx

= cN
1

cN
2

(
cN

2

cN
1

− G
N+1,0
1,N+1

[
c
Nβ

2 y
β

50

∣∣∣∣∣10, α+1
β

, . . . , α+1
β

])
, (61)

where we have used the fact that

lim
x→0

G
N+1,0
1,N+1

[
c
Nβ

2 xβ

∣∣∣∣∣10, α+1
β

, . . . , α+1
β

]
= cN

2

cN
1

. (62)

Hence the median can be computed numerically from the equation

G
N+1,0
1,N+1

[
c
Nβ

2 y
β

50

∣∣∣∣∣10, α+1
β

, . . . , α+1
β

]
= 1

2

cN
2

cN
1

. (63)

However, it would be desirable to obtain approximate analytical expressions for the median.
A first approach would be to note that PN(x) represents the product of N distribution

functions. Hence using the CLT (see appendix B), we know that pN(x) tends to the distribution
function of a log-normal.

Since we are interested in the mass median (5) we define p′
N(x) = xpN(x). Note that

P ′
N(s) = PN(s + 1), that is

P ′
N(s) =

[


(

s+α
β

)]N [


(

α+1
β

)]−Ns

[


(

α
β

)]N(1−s)
. (64)
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From the CLT, we know that as N grows to infinity, P ′
N(s) → e(s−1)(μ+(s−1) σ2

2 ), the Mellin
transform of a log-normal density function, where

μ = N

∫ ∞

0
ln xp′

1(x) dx = N
d

ds
P ′

1(s)

∣∣∣∣
s=1

, (65)

σ 2 = N

∫ ∞

0
(ln x)2p′

1(x) dx −
(∫ ∞

0
ln xp′

1(x) dx

)2

= N

(
d2

ds2
P ′

1(s) −
(

d

ds
P ′

1(s)

)2
)

s=1

. (66)

Computing μ and σ 2, we obtain that

μ = N

(
1

β
�(0)

(
α + 1

β

)
− ln

(


(

α+1
β

)


(

α
β

)
))

σ 2 = N
1

β2
�(1)

(
α + 1

β

)
,

(67)

where �(j) is the poly-gamma function of order j [37]. Hence the mass median of pN(x) will
tend asymptotically to the median of a log-normal distribution which will be given by

y50 → eμ =
[



(

α
β

)


(

α+1
β

)
]N

e
N
β

�(0)
(

α+1
β

)
. (68)

However, the approximation given by (68) is only good for large N; it would be desirable
to obtain an approximation containing terms of order less than O(N), i.e. an asymptotic
expansion in N.

To do this, we use the Cornish–Fisher (C–F) expansion (see appendix C) as follows. Call
by X′

n the random variable whose probability density function is given by p′
N(x). We use

the C–F expansion to obtain the 0.50 quantile of Y ′ = ln X′
n, which we denote by q̂. Then

y50 = eq̂ . The reason to use a logarithmic transformation is that ln X′
n will, by the CLT,

resemble more closely a normal.
To compute the C–F expansion we need to obtain the cumulants of Y ′. From the definition

of the cumulant-generating function, which we denote by gY (z), one has:

gY (z) = ln E[ezY ′
] = ln E

[
X′z

n

] = ln

(∫ ∞

0
xzp′

N(x) dx

)
= ln P ′

N(z + 1). (69)

Then, the cumulants κj are defined as

κj = dj

dzj
gY (z)|z=0 = dj

dsj
(ln P ′

N(s))s=1. (70)

Using (64) we have that

ln P ′
N(s) = N ln 


(
s + α

β

)
− Ns ln

[



(
α + 1

β

)]
− N(1 − s) ln

[



(
α

β

)]
, (71)

and hence can obtain an expression for κj as follows:

κ1 = N

(
1

β
�0

(
α + 1

β

)
+ ln

[


(

α
β

)


(

α+1
β

)
])

, (72)

κj = N

βj
�(j−1)

(
α + 1

β

)
, j > 1. (73)
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Following the procedure in appendix C, we obtain that

μ = κ1 = N

(
1

β
�0

(
α + 1

β

)
+ ln

[


(

α
β

)


(

α+1
β

)
])

, (74)

σ 2 = κ2 = N

β2
�(1)

(
α + 1

β

)
, (75)

κ∗
1 = κ∗

2 = 0, κ∗
j = κj

σ j
= N1−j/2

�(j−1)
(

α+1
β

)
[
�(1)

(
α+1
β

)]j/2 , j � 3, (76)

so defining q̂∗ = q̂−μ

σ
, we obtain the C–F expansion for q̂∗ as follows:

q̂∗ ≈ − 1
6κ∗

3 + 1
40κ∗

5 − 1
12κ∗

3 κ∗
4 + 17

324 (κ∗
3 )3, (77)

where we have used that �−1
N (0.50) = 0. Solving for q̂ as a function of the cumulants and

using that y50 = eq̂ , we then obtain

y50 ≈ eμ− σ
6 κ∗

3 + σ
40 κ∗

5 − σ
12 κ∗

3 κ∗
4 + 17σ

324 (κ∗
3 )3

, (78)

which can be written in terms of the parameters as

y50 ≈
[



(

α
β

)


(

α+1
β

)
]N

exp

{
N

β
�(0)

(
α + 1

β

)
− 1

6β

�(2)
(

α+1
β

)
�(1)

(
α+1
β

)
+

N−1

40β

�(4)
(

α+1
β

)
[
�(1)

(
α+1
β

)]2 − N−1
�(2)

(
α+1
β

)
324β

[
�(1)

(
α+1
β

)]4

×
[

27�(1)

(
α + 1

β

)
�(3)

(
α + 1

β

)
− 17

[
�(2)

(
α + 1

β

)]2
]}

. (79)

Discarding the terms of order N−1, we obtain a good enough approximation for most
cases:

y50 ≈
[



(

α
β

)


(

α+1
β

)
]N

exp

{
N

β
�(0)

(
α + 1

β

)
− 1

6β

�(2)
(

α+1
β

)
�(1)

(
α+1
β

)
}

. (80)

Note that the C–F expansion can be used not only for the mass median, but for any other mass
fraction, by following the procedure outlined in appendix C. Also, if necessary, more terms
could be added to the expansion.

Like in the case of the log-normal distribution, the above expression allows the calculation
of the index N from a measurement where y50 is determined, assuming a known process
where a single-step mass partition can be modeled by a Fréchet distribution with α and β

known beforehand. In fact, from expression (80), one can explicitly express N as a function
of y50:

N =
ln(y50) + 1

6β

�(2)( α+1
β

)

�(1)( α+1
β

)

ln
{


( α
β
)


( α+1
β

)

}
+ 1

β
�(0)

(
α+1
β

) . (81)

Thus, using the above approximate expression for N given y50, one can calculate the mass
fraction given yφ using the C–F expansion.
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Figure 4. The mass fraction φ as a function of y50 and yφ for several values of α and β: (a) fixed
α = 1.5, and (b) fixed β = 0.5.
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Figure 5. Combined plots of pdfs for both Féchet and transformed gamma (β = 1, and N given
by expression (82)) sharing the same mass median y50, for example values of α and β. Note the
very small discrepancy found over the physical domain where the functions should work.

Again, it is important to emphasize that, from the practical view, N is an intermediate factor
with a high physical meaning proportional to ln(y50). Note that this is the same dependence
for the log-normal distribution as well (see (43)). From that meaning of N, the magnitude
of y50 indicates the ‘degree of convolution’ of a process: the larger y50, the wider the size
distribution is, indicating a process undergoing a large number N of partition steps. Figure 4
provides the values of the mass fraction φ as a function of y50 and yφ for several values of α

and β.
From the applied, practical view, a series of interesting results arise from the analysis

just outlined. For example, the Fréchet distribution can be very accurately approximated by
the function resulting from the transformation ϒ[p(x),N ] applied on a gamma distribution
searching for the appropriate value of N, and this value can be easily obtained using
approximation (81). In effect, the gamma distribution corresponds to a Fréchet with β = 1.
Then, equating the value of the mass median y50 of a transformed gamma with parameter N
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(equation (80) with parameter β = 1), and that of a Fréchet (equation (80) with parameter
N = 1), one easily obtains

N =
ln
{




(
α
β

)



(
α+1
β

)} + 1
β
�(0)

(
α+1
β

)− 1
6β

�(2)( α+1
β

)

�(1)( α+1
β

)

− ln α + �(0)(α + 1) − 1
6

�(2)(α+1)

�(1)(α+1)

. (82)

This result is supported by the very interesting fact that for a given value of α, the differences
among transformed Fréchet distributions with different β values but sharing the same median
size y50 are negligible, for an ample range of β values (see figure 5).

Therefore, equation (82) would constitute a closed, approximate but useful expression for
the ‘degree of convolution’ N of a gamma distribution due to ligament breakup mechanisms
[15–17] in a real spray whose experimental pdf is fitted by a Fréchet distribution with
parameters α and β. Moreover, like in the case of the log-normal distribution, N is not
restricted to natural numbers, consistently with the continuous nature of the parameter β.
These results justify the success of this particular pdf to describe the droplet size distribution
in sprays.

4. Conclusions

In this work, we propose a consistent operational calculus framework derived from dynamical
arguments to characterize droplet/bubble size distributions resulting from turbulent breakup
of an immiscible fluid into a carrier one. Starting from a finite-difference formulation of
the integro-differential continuous coagulation and fragmentation equation, we show that the
dynamical processes taking place in a random breakup/coalescence process of a disperse
phase may exhibit the same structure as a discrete sequence of Mellin convolutions between
the probability distribution of the evolving disperse phase and a generic kernel. This kernel
may have its physical correspondence with the probability distribution resulting from a
single breakup event, e.g. a liquid ligament breakup in a ligament-mediated spray formation
[15, 16]. A natural consequence of the dynamical reduction proposed is that the number
of convolution steps in the sequence can be reduced to a single parameter. To illustrate the
physical faithfulness of our proposed parametrical reduction, we apply our procedure to the
exponential and the gamma distributions to obtain the Fréchet distribution (earlier used by
Rosin and Rammler (23), and by Nukiyama and Tanasawa (24)). This provides a physical
foundation for the success of this particular probability density function in accurately fitting
experimentally measured droplet size distributions in sprays and emulsions, and opens a new
avenue for the exploration and generalization of other novel model distributions, e.g. one that
have recently shown an apparently strong fitting power [38].

Appendix A. Mellin transform: definition and selected properties

Perhaps less known than other integral transforms, the Mellin transform [39] is an useful
tool that can be used to simplify problems involving products of probability distributions, in
a similar way that the Laplace transform is used in situations involving sums of probability
distributions.

Given a function f (x) defined for nonnegative values of x, its Mellin transform F(s) is
defined as

F(s) =
∫ ∞

0
f (x)xs−1 dx, (A.1)
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where s is a complex-valued variable, s = σ + iω. In general integral (A.1) will only exist for
some values of s such that a1 < a < a2, known as its strip of definition.

For example, if f (x) = e−px , p > 0, then F(s) = p−s
(s), where 
(s) is the Euler
gamma function; this can be seen directly from (A.1) inserting f (x) = e−px and changing the
variable of integration from x to px.

From F(s) one can recover the original f (x) using the inverse Mellin transform, which
is defined as follows:

f (x) = 1

2π i

∫ a+i∞

a−i∞
F(s)x−s ds, (A.2)

where the integration in (A.2) is done in the complex plane along the line Re(s) = a (which
must lie inside the strip of definition). This integral is in general hard to evaluate, but can
sometimes be computed using the method of residues.

From the point of view of probability theory, the most interesting property of the
Mellin transform is the exchange formula relating the transform of two functions and their
multiplicative convolution. Given two functions f (x) and g(x) their multiplicative convolution
h(x), which we write as h(x) = f (x) � g(x), is defined as

h(x) =
∫ ∞

0
f (y)g

(
x

y

)
dy

y
. (A.3)

The Mellin exchange formula gives the Mellin transform of the convolution as H(s) =
F(s)G(s). Note that this implies the commutativity of the convolution, i.e. f (x) � g(x) =
g(x) � f (x).

The interest of multiplicative convolution for probability theory is the following. If f (x)

and g(x) are the probability density functions of two (positive) random variables X1 and X2,
then the density function of the random variable X3 defined as the product of X1 and X2, i.e.
X3 = X1X2, is given by the multiplicative convolution as defined in (A.3). Thus, the Mellin
transform can be used as a tool to obtain, using the exchange formula, the probability density
function of products of two or more random variables.

Next we summarize other useful properties of the Mellin transform, in which we assume
that F(s) is the Mellin transform of a function f (x).

(i) The Mellin transform of f (px), for p > 0, is given by p−sF (s).
(ii) The Mellin transform of f (xa), a > 0, is given by 1

a
F
(

s
a

)
.

(iii) The Melllin transform of xzf (x) is F(s + z).
(iv) The Mellin transform of (ln x)n f (x), n a positive integer, is dn

dsn F (s).

Appendix B. The central limit theorem for products of positive random variables

The central limit theorem (CLT) is a well-known fact in probability theory. Given n
independent, identically distributed (i.i.d.) random variables denoted by Xi, i = 1, . . . , n,
with mean μ and variance σ 2 then, under very mild conditions, when n → ∞, one has that∑n

i=1 Xi − nμ

σ
√

n
→ N(0, 1), (B.1)

where N(m, s2) denotes the normal distribution with mean m and variance s2. This is
convergence in distribution. Using the properties of the normal, we can write that

n∑
i=1

Xi → N(nμ, nσ 2), (B.2)
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taking into account that the right-hand side of (B.2) diverges as n goes to infinity, so it has to
be interpreted as an asymptotic expansion.

To handle a product of positive i.i.d. random variables [40], we take into account that
n∏

i=1

Xi = exp

(
ln

n∏
i=1

Xi

)
= exp

(
n∑

i=1

ln Xi

)
, (B.3)

and defining Yi = ln Xi , we obtain that
n∏

i=1

Xi = exp

(
n∑

i=1

Yi

)
→ exp

(
N
(
nμY , nσ 2

Y

)) = LogN
(
nμY , nσ 2

Y

)
, (B.4)

which is the CLT for products of random variables. In (B.4), logN(m, s2) is the log-normal
distribution with parameters m and s2, and μY and σ 2

Y are respectively the mean and variance
of the variables Yi, which are computed from the density function f (x) of the variables Xi as
follows:

μY = E[Yi] = E[ln Xi] =
∫ ∞

0
ln xf (x) dx, (B.5)

σ 2
Y = E

[
Y 2

i

]− E[Yi]
2 = E[(ln X)2] − μ2

Y =
∫ ∞

0
(ln x)2f (x) dx − μ2

Y . (B.6)

Appendix C. Cumulants and the Cornish–Fisher expansion

When characterizing droplet size populations with probability distributions, it is important to
know not only density functions (or moments), but also quantiles such as the median and mass
median. Cornish and Fisher developed an expansion for approximating the q-quantiles of a
random variable X using only its first few cumulants [41].

Cumulants of a random variable X are formally defined using the cumulant-generating
function g(t) defined as

g(z) = ln(E[ezX]), (C.1)

i.e. as the logarithm of the moment-generating function. The nth cumulant κn is then defined
as the nth derivative of g(z) at z = 0:

κn = g(n)(0). (C.2)

Note that κ1 = μ and κ2 = σ 2, respectively the mean and variance of X. To compute the next
cumulants of X up to order 5 we can use the following formulas:

κ3 = μ′
3, κ4 = μ′

4 − 3(μ′
2)

2, κ5 = μ′
5 − 10μ′

3μ
′
2, (C.3)

where μ′
j are the central moments of order j defined as

μ′
j = E[(X − μ)j ]. (C.4)

Next we show the Cornish–Fisher asymptotic expansion. Assume first that X has zero
mean and standard deviation 1. Then the q-quantile of X, �−1

X (q), can be approximated using
the first five cumulants of X as

�−1
X (q) ≈ �−1

N (q) +
�−1

N (q)2 − 1

6
κ3 +

�−1
N (q)3 − 3�−1

N (q)

24
κ4

− 2�−1
N (q)3 − 5�−1

N (q)

36
κ2

3 +
�−1

N (q)4 − 6�−1
N (q)2 + 3

120
κ5

− �−1
N (q)4 − 5�−1

N (q)2 + 2

24
κ3κ4 +

12�−1
N (q)4 − 53�−1

N (q)2 + 17

324
κ3

3 , (C.5)
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where �−1
N (q) is the q-quantile of a standard normal random variable N(0, 1). If X has mean

μ and standard deviation σ , define the normalization of X, denoted as X∗, as

X∗ = X − μ

σ
, (C.6)

and use the Cornish–Fisher expansion (C.5) to obtain �−1
X∗ (q). Note that the central moments

μ′∗
j of X∗ are obtained from the central moments of X as

μ′∗
1 = 0, μ′∗

2 = 1, μ′∗
j = μ′

j

σ j
, j � 3, (C.7)

and similarly the cumulants are given by

κ∗
1 = 0, κ∗

2 = 1, κ∗
j = κj

σ j
, j � 3, (C.8)

Then the q-quantile of X is recovered as

�−1
X (q) = σ�−1

X∗ (q) + μ. (C.9)
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